数学以其缜密的逻辑向人们展示着它的美,培根就说过,数学是思维的体操。然而,不少学生却忽略了它的美丽,在题海中疲惫地挣扎,完全不顾对基本要领理解,这种只顾埋头拉车,而不抬头看路的做法,往往导致事倍功半,极大地挫伤人的自信心。幸好我遇到了几位优秀的老师,他们都提醒我要注重理论修养。于是,我开始在这方面钻研,进步果然较快。
实践告诉我,可以从三个方面去加强理论修养,即理解基本概念,总结实践经验,形成知识网络。
一、理解基本概念
数学大厦是由一个个公理、定义、定理作基础砌成的,加强对这些概念的理解,有助于我们解题。且不谈对集合、极限、三垂线这些内涵丰富的概念的理解,单是从“a大于b”的定义上就可挖掘出很多东西。书上如此定义:“如果a-b>0,则称a>b”,从定义我们可以直接得到判定两个数大小的一种方法------作差比较法,深入思考可得a=b+△x(△x>0)(增量代换法),a>a+b/2>b(放缩法)等。越是这样深入想,就越觉得数学有无穷魅力。
二、总结实践经验
高三时,题目得很多,这就得从题目中理出一个头绪来,掌握通性法。例如,做了不少不等式的证明题后,可总结也证不等式的基本方法为:比较法(作差、作商)、公式法、判别式法、数学归纳法等,特殊方法有放缩法,常用技巧有“图像法”、“换元法”、
“裂项法”等。总结之后,对运用这些方法解出的典型题目做一个回忆,加深印象,达到“见过的题目类型会做,棘手的题目可用这些方法分别去做”的境界,解题能力大为提高。
做题目难免出错,要对常出错的地方进行总结,写出错因,并用一个本子记下来(不必记题目)。例如:等比数列求和要考虑公比是否为1,偶次根号下的数要大于0(实数),除数不能为0等等。
应该说,每次考试后,总有自己的一些对解题的体会,不妨定在一个本子上。如:考试时应注重时间的分配,解题速度如何,是计算出错还是方法不对,书写要整洁有条理等。
通过这些总结,对自己有了更深地了解,哪些地方娴熟,哪些地方薄弱,然后对症下药,使自己的知识完善,技能得到提高。
三、形成知识网络
在做好一、二点的基础上,要形成自己的知识网络,“由厚变薄”。高中数学知识包括代数、立体几何、解析几何,其中代数分支较多,包括集合、函数、不等式、数列与极限、复数、排列组合、二项式定理。各章又可细分,于是形成了一个大的网络。不过,要构建这个大网络,首先得构建好一个个小网络,即对每一个章节进行构建,内容包括概念、重点、基本解法与数学思想、易出错点与其他知识联接点等,待第一轮复习后,花大概两天的功夫将这些小网络并成大网络,在以后的复习中不断对这个网络补充,加深印象。
我想,经过了这样的三步曲,我们的数学理论知识就会得到大大的提高,加上不断地解题实践,我们的思维就会活跃,自信心就会增强,每次考试前回想一下网络,我们就会胸有成足地去面对考试,走向胜利!